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Motivation Designing New Convolutional RNNs to Improve Object Recognition

The primate ventral visual stream performs object recognition

with a series of feedforward computations. However, it is also rich A ResNet Block Vanilla RNN Cell B oot Gaced 1P O (1~ 16
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feedforward convolutional neural network (CNN) models of the ventral
stream..We therefore augmented CNNs with recurrence (ConvRNN:Ss.)

A Large-Scale Search Identified ConvRNNs Match Deeper Task-optimized ConvRNNs Predict Conclusions

CNNs on ImageNet Performance Neural Dynamics in V4 and IT - Standard RNN cells (e.g ConvLSTMs) do not im-
A

prove ImageNet performance when installed in a
0.75° 1 , Performance Optimized /I feedforward model
15.5 21.8 Pt gt Hecurrence BN\ - The Reciprocal Gated Cell, which includes both
: gating and bypassing, allows ConvRNNs to match
performance of deeper models and larger CNNs
- ConvRNNs explain temporal dynamics in visual
| cortex better than simpler recurrent models

Better Recurrent Architectures
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S FiypeiOnt Savole Muber cIT/alT Next steps include:

| - optimize ConvRNNs for other tasks and robustness

g - explore more sophisticated decoding from dynamics
- continue search for better recurrent motifs to

o] o T augment stronger CNIN backbones

I_ II - compare ConvRNN outputs to primate behavior
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