Learning to Play with Intrinsically-Motivated Self-Aware Agents
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Introduction Approach: Self-Model Vs World-Model

novel but predictable actions.
- Playful behavior emerges as the agent pushes the

Learning in a physically realistic embodied environment. Agents move around and interact with objects. ego | obj | obj,
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supervision. curious playing. novel becomes old hat, and the cycle repeats.

Task Transfers Future Work
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Navigation and planning behavior for |2 consecutive time steps. 11
Red force vectors on the objects depict the predicted actions.
Ego-motion self prediction maps are drawn at the agents position.
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Phyiscally and visually realistic simulation environment.
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The agent starts off without seeing an object and

turns around to explore for an object. Once an Next steps include
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Emerging behaviors across different models. Different combinations of world-model tasks and policy mechanisms are compared. Model comparison on task transfers including object presence (binary classification), localization (pixel-wise - CU I”iOSitY towards the novel but learnable
2D centroid position), and recognition (| 6-way categorization). Linear estimators were trained on top off the : : :
- animate attention and theory of mind

output features of each model.
- comparision to human developmental data
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